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ABSTRACT

In the traffic industry, the automatic accident detection system is a major concern. Although image-based

and radar-based traffic accident detection systems are commonly employed, they have several drawbacks,

including the need to secure the camera's field of view, a high rate of false alarms, and a lengthy detection

time. Using a real-time acoustic surveillance system and the classification algorithm via Convolutional Neural

Network (CNN), this article proposes several methods for identifying abnormal situations, such as a car crash

or tire skid sound, to overcome the limitations of existing methods. We create an audio database by collecting

sounds from two tunnels in South Korea using self-made microphones for eight months and classifying them

into three categories: car crash, tire skid, and normal environmental sounds. We establish a three-step

classification procedure using an algorithm. We compare the detection rate and false alarm rate of our

proposed method to those of deep learning techniques including MLP (Multi-Layer Perceptron), Long-Short

Term Memory, ShuffleNetv2, and MobileNetv2. In addition, we present a method for filtering out irrelevant

sound data to improve the computational efficiency of our approach.

Key Words : Convolutional Neural Networks, Acoustic-based Accident Detection System (AADS), Real-time

Accident Detection System, Audio Classification, Car Crash Sound, Tire Skid Sound, Signal

Processing

Ⅰ. Introduction

Due to the rising need for road security and

safety, there has been a rise in interest in advanced

traffic surveillance systems[1]. Tunnels are a unique

type of road in that they have a very restricted

escape route and distinctive acoustic properties

compared to other types of roads. Due to the

tunnel's spatial and temporal limitations, it is

difficult to detect accidents with speed and accuracy.

As a result, most tunnel accidents result in

secondary incidents, such as multiple collisions,

which can cause severe economic losses, fatalities,

or both. Because of this, accurate accident detection

in tunnels is more crucial than on other types of

roads.

Over the past several decades, global expansions

of security-related fields have been observed. As the

need for security has increased, image-based

surveillance systems have emerged as a crucial area

of research. These systems primarily utilize visual

data, such as video footage[2, 3], radar data[4] and

ultraviolet/infrared data[5]. They perform well, but

have several limitations in environments where

vision is dysfunctional, such as when there is

smoke, darkness, fog, or other environmental

conditions. Not only do these systems often have a

delayed detection time and a high false alarm rate[6],

but they also have high processing costs and are

susceptible to certain physical factors, such as
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camera blind spots and the obstruction of vision by

other large-sized vehicles.

As a complementary and alternative approach to

image-based accident detection systems, Acoustic-

based Accident Detection Systems (AADS)[7] have

garnered significant interest as a suitable means of

addressing these issues. The AADS process consists

of three steps: the collection of real-time sounds, the

extraction of features for accident detection using a

proposed model, and the classification of sounds

into three categories: car crash, tire skid, and normal

environmental sounds.

In the final step of the algorithm, a performant

classifier is essential. Historically, early classifiers

were based on statistical models, such as Support

Vector Machine (SVM)[8, 9] and Hidden Markov

Models[10, 11]. Recent advances in computing power

have given rise to a DNN-based method[12] such as

Recurrent Neural Network (RNN)[13] and Long-Short

Term Memory (LSTM)[14, 15]. They are frequently

used as classifiers in Sound Event Detection (SED).

Classifiers based on Convolutional Neural Networks

(CNN), which are widely used in computer vision,

have demonstrated remarkable performance in SED

tasks when compared to conventional approaches.

There are studies on the classification of

environmental sounds[16-20], bird sounds[21], detection

of abnormal heart and lung sounds[22] and

classification of traffic sounds[23, 24]. However, the

focus of the paper was primarily on the

performance of classifiers that predict the classes of

each sound based on previously collected datasets.

They have not considered how to collect and

process acoustic data in real-time. We have

developed the entire procedure for collecting

acoustic data from tunnels, extracting features from

collected acoustic data, and classifying them in

real-time based on our years of experience operating

AADS in tunnels. In this paper, we propose a

comprehensive method for detecting tunnel-caused

accidents or hazardous situations using a real-time

acoustic surveillance system.

Process efficiency and performance are important

in real-time surveillance systems because they are

related directly to the time required to detect an

event and the operational costs of the system. Voice

Activity Detection (VAD)[25] is a voice recognition

technique that detects the occurrence of a voice in

a noisy environment. We assumed that the

fundamental concept of VAD could make our

algorithm more effective because tunnel accidents

are uncommon. In this paper, we present an Event

Activity Detection (EAD) method that employs the

results of sound feature extraction to determine

when an important event occurs. In contrast to other

EAD approaches, our proposed EAD method can

ignore irrelevant noises and extract only the

specified event sounds.

The structure of the remaining sections of the

article is as follows: Section 2 describes the details

of the dataset relating to tunnel-related occurrences.

In 3.1, we describe how to preprocess sounds and

introduce the hyper-parameter associated with the

input scale of the deep learning model, including

methods for sound feature extraction, body size,

shift size, and window size. In 3.2, we describe the

EAD algorithm for detecting the precise occurrence

of an event in an efficient manner. In 3.3, we

present a method for identifying real-time audio data

using CNN models and introduce the architecture of

our CNN model. Summarize section 3 in 3.4.

Section 4 explains performance evaluation metric,

learning methodologies, and testing procedures. In

Section 5, we compare the performance of the

proposed CNN model to that of the MLP, LSTM,

and ShuffleNetv2[26], MobileNetv2[27], utilizing the

evaluation metric described in section 4. Section 6

concludes this paper.

Ⅱ. Dataset

The absence of public tunnel databases for use as

references has posed the greatest challenge to the

research. The Mivia road dataset[28, 29] has been

extensively applied to the classification of abnormal

traffic sounds and includes three classes: car crash

sounds, tire skid sounds, and environmental sounds.

However, it does not include every conceivable

event that could occur in the tunnels under

consideration. Moreover, because we are solely
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Fig. 1. (left) Image of the self-made microphone, (right)
Installation of the self-made microphone

Class Description n

a1 Car crash 111

a2 Tire skid 255

b0 Environmental sounds 1141

Total 1507

Table 1. Description of tunnel event classes and data
figures

interested in the classification of tunnel-related

events, this dataset is unsuitable for our research.

The acoustic environment of a tunnel is distinct

from that of a public road. Since the road conditions

in long tunnels are incredibly unique due to weather

or traffic conditions[30], we had to apply a different

methodology to our tunnels data as opposed to the

methods currently in use.

Eight months in two domestic tunnels, we

collected real-time sound data from tunnels using

microphones we made ourselves.

The self-made microphone is capable of recording

sound data up to 75m away. We installed these

microphones every 100m from the entrance to the

exit of the tunnel and equipped the tunnel with

2m-tall walls.

When input signal is recorded, this microphone

converts input signal to a digital signal and transfers

it to an analytic server using the TCP/IP protocol.

We use a digital signal with a sample rate of 48kHz,

1 second, 2 channels (L/R), and 16 bits (=2bytes)

for sound recording. Therefore, 1 second of sound

data generates 192,000 bytes, and we send 16,384

bytes of data to the analytic server due to a

predefined protocol. Based on the ratio of 16,384

bytes to 192,000 bytes, the value is close to 0.085

seconds. Thus, every 0.085 seconds, 16,384 bytes of

data can be transmitted.

The tunnel occurrences were divided into three

distinct categories. Table 1 provides material and

statistical data by category. The classes that must be

detected, including car crash and tire skid sounds,

are labeled with the letter “a”, while the remaining

environmental sound classes, including siren and

horn sounds, are labeled with the letter “b”. Since

the data used in this paper belongs to a specific

company, we ask for your understanding as we

disclose only a portion of it. Each class's sample

data is available at

https://github.com/joo-young-lee/TunnelCNN

Each data sample lasts 30 seconds, and only a

small portion of each sample contains the sound of

an actual event. In general, event sounds begin

approximately 10 seconds after the beginning of the

sample and end within three seconds, except

for sirens.

In some circumstances, a single sample data can

include multiple events. For example, car crash

sounds (a1) typically follow tire skid sounds (a2)

because drivers instinctively stop their vehicles to

limit the damage as soon as they realize a collision

is likely to occur. We categorized the data samples

in this instance as belonging to the class with louder

sounds for convenience.

Ⅲ. Proposed Methods

3.1 Real-Time Sound Preprocessing
This section explains how to implement real-time

sound preprocessing, including how to convert raw

sound data into the correct format for a classifier.

For processing in real-time, the data must be

transformed into the right format with a defined

size. In two-dimensional data - time-frequency grid

- the horizontal axis represents time, and the vertical

axis represents frequency. As we mentioned above,

the sound that was recorded in real-time must be

separated into the right size because the time axis of

the input cannot be infinite. Additionally, the time

shift till the next time-frequency data must be

calculated. We have defined the following related
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terms:

The smallest among terms is a window size. We

use a rectangular window function for the window

size and set the duration to 0.05s. And these

windows are group to form a body, and the body

size is set to 3s. The distance between one sample

and the next is referred to as a shift size. The shift

size is set to 1s. A min/max bandwidth is parameter

that specifies the section of the vertical axis

(frequency) that will be used to extract features from

actual inputs. We set it to 300-7 kHz. Since a

frequency distribution of the collected sounds was

within 7 kHz and that noises in the tunnel below

300 Hz had a common characteristic, they were

eliminated to reduce the size of the input.

One of the straightforward ways to predict the

sound collected in real-time with our CNN models

is to extract the features corresponding to one body

from the current time point and use it as the initial

input value, then move the time point and extract

the features corresponding to the next body. In this

regard, we must define in advance certain

hyper-parameters associated with a sound feature

extraction.

There are so many sound feature extraction

methods. In this paper, the Fast Fourier Transform

(FFT)[31], with low operating cost and low

complexity is used to transform the data.

3.2 EAD (Event Activity Detection)
Traditionally, multiple methods for sound

classification were employed to collect sound data

all at once in the end. Then put all of them to train

the model, and apply it. In other words, there is no

sound detection in real-time - this is the reason for

the lengthy detection time. In addition, the collection

of sound data all at the same time may decrease

operational efficiency.

EAD is designed to detect an event only when a

particular event has happened. If the EAD method is

not used, all data should be used as input data for

deep learning models. Since only a minute portion

of the real-time sound collection contains remarkable

events, the remaining data is insignificant and can

be disregarded. To filter out irrelevant sound data,

our initial EAD hypothesis is that, if any events

have occurred, the current body's information

quantity is likely to be greater than the previous

body's.

Here, we define some necessary notations. Let

denote the body index l (l = 0, 1, 2, ....), b represents

the body size, s represents the shift size, x : y

represents a body starting at time point x and ending

at time point y. We begin by extracting features, the

magnitude of (l * s - b) : (l * s) at the first body and

using it as the classification model's initial input

value. Then, we shift the body by multiplying s to

the first body. In this manner, we can detect the

event using the (l * s - b) : (l * s), {(1 + 1) * s - b} :

{(l + 1) * s}, {(1 + 2) * s - b} : {(l + 2) * s}, … , as

the input, by iterating. We consider the sum of the

body's magnitude values to be its information

quantity and determine when an event occurs by

calculating the ratio of the current body's

information quantity to that of the previous body.

Again, EAD is a method for event detection.

Also, we cannot enter all inputs all at the same.

Input must be segmented into specific units,

converted to accommodate the classifier, and only

those that can be regarded events must be

implemented into the model.

Consider the case where the event occurred not at

the first body but at the second body. In this

situation, the sum of the second body relative to the

sum of the first body would be astronomically large.

If the ratio between and the sum of the second body

and the sum of the first body is greater than the

constant k, we can assume an event has taken place,

the third body, {(1 + 2) * s - b} : {(l + 2) * s}, will be

the input value. In other words, if the following

equation for k≥1 holds true:

(1)

In this case, if the second body is used as the

input value, the event in the second body exists at

the extreme right, and there may be instances where

the entire event cannot be included. For example,

the tire skid sound frequently occurs after a car
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accident, but if we only use the second body, the

tire skid sound characteristics may not be contained

within the second body. It is possible to predict

incorrectly a sound like car sounds in this

circumstance. We must move a critical window to

the center of the body. Consequently, the accuracy

of the deep learning model can be improved by

inserting the skid sound in the next body, the third

body {(1 + 2) * s - b} : {(l + 2) * s}.

If b in equation (1) is greater than s, the

numerator and the denominator overlap (l * s - b) : (l

* s). In other words, s cannot exceed b. If s is

greater than b, data can be discontinuous. This may

result in data loss. To enhance the efficiency of the

EAD algorithm, it is possible to eliminate the

redundant sum of frequently overlapping (l * s - b) :

(l * s). Consequently, if the input is {(1 + 2) * s - b}

: {(l + 2) * s}.

In the case of b > s in equation (1), {(1 + 1) * s

- b} : {(l + 1) * s} of the numerator and

denominator frames overlaps. To enhance the

performance of the EAD algorithm, it is possible to

reduce the redundant sum of frequently overlapping

S{(1 + 1) * s - b} : {(l + 1) * s}. That is, if {(1 +

2) * s - b} : {(l + 2) * s} is used as the input.

Eventually, all our inputs are data that satisfied

equation (1) and should have to be the third body -

{(1 + 2) * s - b} : {(l + 2) * s}.

(2)

In general, the constant kˊ should be the highest

value capable of generating bodys containing all

accident sounds, and it is dependent on

tunnel-specific parameters such as time and

environment (weather, seasonal, etc.).

Because sound is amplified and echoed more in a

narrow tunnel than in other tunnels, must be

increased. We chose daytime (06:00-22:00) k values

to be lower than midnight (22:00-06:00) k values.

The reason for setting this parameter is that,

according to an 8-month analysis of the data, minor

accidents are more likely to occur during the day

because there are more vehicles on the road,

whereas there is a greater chance of a major

accident occurring at midnight because there are

fewer vehicles on the road. This resulted in an

average daily reduction of input bodies to the

classifier of approximately 27 percent.

3.3 Classifier
We use our own CNN model. MLP, LSTM,

ShuffleNetv2, and MobileNetv2 were also utilized

for comparison.

The architecture of the CNN model utilized in the

experiment is depicted in Figure 2. Conv2d is a

two-dimensional (2-D) convolutional computation

with (i, o, (k1, k2), (s1, s2), (p1, p2)), where i is the

number of input channels, o is the number of output

channels, k1 × k2 is the size of the kernels, s1 × s2

is the size of the strides, and p1 × p2 is the size of

the padding. Each convolution layer has batch

normalization, dropout, and ReLU activation

functions applied. Due to the asymmetry of the

input, we also utilized a rectangular convolutional

operation with a kernel size of (3, 5) and a padding

size of (1, 2). The reason for the asymmetric input

is described in full in section 4.1.

Early CNN models employed fully connected

(FC) layers after flattening the feature map

generated from the convolution layer, and global

average pooling (GAP)[32] layers have been

commonly used for CNN classification in recent

years. GAP computation is the process of acquiring

(1 × 1 × d) tensors by averaging the values of all

height & weight values of (h ×w × d) tensors by

each channel, flattening them to a one-dimensional

value, and connecting them to the FC layer based on

the number of outputs. Because pooling computation

does not require learning parameters, the GAP layer

produces a model with far less parameters than the

FC layer due to its light-weighted nature.

Consequently, the GAP layer was applied to the

final convolution layer of the model based on the

size of each channel (h × w). Finally, Softmax

functions were employed in the output layer to

compute the cross-entropy loss.
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       Pred 
Actual  a1 a2 b0

a1 x11 x12 x13

a2 x21 x22 x32

b0 x31 x32 x33

Table 2. Confusion matrix of the car crash, tire skid,
and environmental sounds classification

Fig. 2. A detailed structure of the proposed convolutional
neural networks

3.4 Overview
This section provides a summary of the

techniques introduced in Section 3. The ratio

between the sum of features in the current body and

the next body is calculated. If the value is greater

than the predefined threshold , the third body is

classified as a car crash, tire skid, or environmental

sounds using a classifier; otherwise, the process

continues. Then, these steps are repeated for (l * s -

b) : (l * s) to shift the current body by the shift size

s. The schematic representation of this procedure is

depicted in Figure 3. We use our own CNN model.

MLP, LSTM, ShuffleNetv2, and MobileNetv2 were

also utilized for comparison.

Fig. 3. Proposed algorithm to process real-time sound and
detect events using convolutional neural network

Ⅳ. Experiments

In this section, we compare the proposed CNN

model’s detection rate and false alarm rate to those

of existing deep learning models. The primary goal

is to maximize detection while minimizing false

alarms. For training purposes, we designate the last

three classes as follows: the car crash as a1, the tire

skid as a2, and everything else as b0. Following are

the calculations for Table 2’s metric, which is a

confusion matrix with three outputs.

• Detection Rate (DR): The following formula

demonstrates the proportion of correct

detection of a1 and a2. The detection rate is

computed based on the following data from

Table 2:

(3)

• False Alarm Rate (FAR): The proportion of

environmental sounds that are incorrectly

identified as a1 or a2 is depicted by the

following formula. The following formula is

used to calculate the false alarm rate based on

Table 2 values:

(4)

4.1 Learning method and criterion 
Among the many proposed and well-known

classifiers, we chose MLP, LSTM, ShuffleNetv2 and

MobileNetv2 as competitors for our own model.

ShuffleNetv2 and MobileNetv2 are CNN models

with few parameters that are learned from

TorchVision's pre-trained models via transfer

learning.

The LSTM model utilizes two LSTM layers to

predict FC output layers, whereas the MLP model

consists of two hidden FC layers and one output

layer after flattening the image data. Table 3

displays the number of parameters for each of the

five classification models, whereas our CNN model

possesses 0.1M parameters. This is a minimum of a

third less than the ShuffleNetv2 and the least

amount among comparable models.

In addition, we investigated how the EAD

algorithm's threshold affects the algorithm’s

equation (1). Real-time processing efficiency can be

enhanced by determining the optimal value of
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Classifier # of parameters

Ours 0.1M

MLP 5.2M

LSTM 1.1M

ShuffleNetv2 0.34M

MobileNetv2 2.2M

Table 3. The number of parameters by classification
models

Fig. 5. FFT visualization for each class (body = 3s,
window = 0.05s, 300Hz-7kHz)

to maintain the detection rate as the model’s optimal

performance and reduce the false alarm rate as the

filter of the negligible body. Thus, the threshold k

determined by the train set was applied to the

validation set and test set. Figure 4 is a scatter plot

displaying a spectrum of EAD criteria for each class

for the train set. At the optimal value k (= 1.028),

the EAD algorithm did not filter out the sounds of

the car crash or tire skid, but it did filter out all

other environmental sounds. We divided EAD

scenarios into these four categories for the

experiment: non-application (k = 0), minimal

application (k = 1), optimal application (k = 1.028),

and excessive application (k = 1.1).

Fig. 4. EAD criterion for each sound source by class
(car crash, tire skid, environmental sounds)

4.2 Hyper-parameters setting 
Prior to conducting experiments, it was necessary

to select hyper-parameters described in section 3.1.

By extracting acoustic features, Mel spectrogram,

MFCC, and FFT have all been used to overcome

acoustic classification issues. Before classifying

abnormal sounds from raw data, the number of

component signals in the raw data had to be

determined. To determine the number of distinct

signals, we utilized FFT, which with low operating

cost and low complexity was used to detect, convert,

analyze, and store acoustic data in real-time during

operation of the system. This enabled the frequency

domain conversion of a time-sequenced mixed

signal. The FFT algorithm is derived from the

Numpy Python library[33], and only the real

components of the magnitude are used. As input

values, we only use FFT output information for the

frequency bandwidth between 300 Hz and 7 kHz.

We determined empirically that environmental

sounds in tunnels corrupt the low-frequency range

(0-299 Hz), whereas the higher-frequency range

(above 7 kHz) are not informative, we found out

through many trainings. In addition, because events

in three classes do not last longer than three

seconds, the body size has been set to 3s, and the

window size has been set to 0.05s which, according

to multiple studies, best distinguishes between class

characteristics. In this configuration of

hyper-parameters, the horizontal axis measured 60

and the vertical axis measured 335. Figure 5

illustrates three visualization classes.

Min-max normalization and an Adam optimizer[34]

with weight decay = 0.005 were applied to the input

values. Learning's hyper-parameters were as

follows: learning rate = 0.002, dropout rate = 0.3,

and mini-batch size = 64. In addition, model
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overfitting was avoided via the use of early

stopping. In order to be more precise, the train set

and test set were split 7:3, and 5-fold

cross-validation was performed in the train set to

prevent overfitting. As a bodywork for deep

learning, PyTorch[35] was utilized.

4.3 Test Procedure 
30-second test sets were combined into a single

test file to simulate real-time conditions. Due to

security concerns, information from all time periods

could not be utilized. Therefore, a sound source was

created for 30 seconds, including 20 seconds

forward and 10 seconds backwards from the time

the event concluded, and all event sources were

combined to create an experimental environment that

resembled the real-time environment. This 30-second

file is processed using the Section 3 method, and

classifiers detect the event utilizing EAD body’s

containing meaningful data. If the current body's

information is reduced or identical to the previous

body's information, it is skipped and not examined

because it does not meet the implementation

requirements of the EAD algorithm.

We can obtain multiple output values from deep

learning models using a single sound using our

method. In this instance, the various output values

were compiled into a single result in order to

populate Table 2. If an accident sound includes at

least one of a1 and a2, maximum voting determines

whether the sound is a car crash sound (a1) or a

skid sound (a2). If neither a1 nor a2 is present, it is

determined that the condition has not been detected

or processed as an accident has not occurred. For

example, for true a1, deep learning models that

anticipated the car crash sound is applied to x11,

whereas a2 is applied to x12. If the results do not

apply to the instances listed above, they are

implemented as x13. Similarly, in the case of tire

skid sounds, a single body prediction as a2 is

applied to x22, and no accident is applied to x23. If

the event is truly b0 and not a false alarm, it will

be counted according to Table 2 in x33. Unless the

actual occurrence is b0, the results are recorded as

x13 or x23.

Ⅴ. Results 

Table 4 displays the results of each classifier's

DR and FAR according to the EAD method. Despite

having the fewest parameters, our suggested model

has the highest detection rate (84.65%) and the

lowest FAR (7.72%) among the other models with

optimal. On the one hand, MLP with excessive has

the lowest FAR (6.46%), but it is not a desirable

model because the detection rate (the primary

metric) is incredibly low. Similarly, our model with

an excessive k has a lower FAR (7.19%) than when

k is optimal (7.72%), but the DR is nearly 5%

lower. We can conclude that our model with the

optimal k had the best performance. In addition,

Table 4 reveals that CNN-based models (including

ours, ShuffleNetv2, and MobileNetv2) have a higher

DR and lower FAR than MLP- and LSTM-based

models. High DR and FAR contribute to LSTM's

tendency to detect every loud sound regardless of

class. Because it disregards acoustic characteristics,

MLP has the lowest detection rate.

This indicates that it is challenging to distinguish

false alarm classes from event classes when

translating sound data to visual data using FFT. In

order to improve the performance of CNN

classifiers, it will be necessary to investigate

different feature extraction approaches from one that

can distinguish between b0 and accident sounds in

future research.

EAD Metrices

Classifier

Ours MLP LSTM
Shuffle

Netv2

Mobile

Netv2

No EAD

(=0)

DR 84.65 47.94 75.61 71.50 76.44

FAR 7.98 12.36 60.43 12.72 9.38

Min k
(=1.0)

DR 84.65 47.94 75.61 71.50 76.44

FAR 7.89 9.73 55.69 12.54 8.86

Optimal k
(=1.028)

DR 84.65 47.94 75.61 71.23 76.44

FAR 7.72 9.12 48.41 11.58 8.42

Excessive

k(=1.1)

DR 79.45 44.93 73.97 68.76 73.69

FAR 7.19 6.46 24.82 11.05 8.16

Table 4. DR/FAR (unit: %) performance comparison of
classification models by threshold k in the EAD algorithm
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Ⅵ. Conclusion

In this study, we present a series of procedures

that detect abnormal sounds in real-time, enabling

tunnel operators to respond immediately to the first

accident and to prevent the second accident in

advance. This sequence comprises three stages.

To recognize occurrences, the first step is to

identify abnormal sound and filter out irrelevant

sound. The second step consists of extracting and

converting sound data to 2D image data. The last

step is to classify the visual data into three distinct

categories: car crash sounds, tire skid sounds, and

environmental sounds.

The contributions of the paper are listed below.

Using an algorithm, the model can distinguish

between useful and irrelevant sounds and eliminate

irrelevant data to increase efficiency. In addition to

classifying abnormal or environmental sounds in

real-time, converting sound to a 2D image, and

defining this data. This procedure sequence has been

algorithmized and implemented in a real tunnel. In

upcoming projects, data loss as a result of data

passing through multiple processes should also be

considered. Additionally, we can utilize and modify

novel algorithms. In addition, compare our research

to the common sound datasets used in signal

processing in the future.
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